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BACKGROUND: Research suggests environmental contaminants can impact metabolic health; however, high costs prohibit in vivo screening of putative meta-
bolic disruptors. High-throughput screening programs, such as ToxCast, hold promise to reduce testing gaps and prioritize higher-order (in vivo) testing.

OBJECTIVES:We sought to a) examine the concordance of in vitro testing in 3T3-L1 cells to a targeted literature review for 38 semivolatile environ-
mental chemicals, and b) assess the predictive utility of various expert models using ToxCast data against the set of 38 reference chemicals.

METHODS: Using a set of 38 chemicals with previously published results in 3T3-L1 cells, we performed a metabolism-targeted literature review to
determine consensus activity determinations. To assess ToxCast predictive utility, we used two published ToxPi models: a) the 8-Slice model pub-
lished by Janesick et al. (2016) and b) the 5-Slice model published by Auerbach et al. (2016). We examined the performance of the two models
against the Janesick in vitro results and our own 38-chemical reference set. We further evaluated the predictive performance of various modifications
to these models using cytotoxicity filtering approaches and validated our best-performing model with new chemical testing in 3T3-L1 cells.

RESULTS: The literature review revealed relevant publications for 30 out of the 38 chemicals (the remaining 8 chemicals were only examined in our
previous 3T3-L1 testing). We observed a balanced accuracy (average of sensitivity and specificity) of 0.86 comparing our previous in vitro results to
the literature-derived calls. ToxPi models provided balanced accuracies ranging from 0.55 to 0.88, depending on the model specifications and refer-
ence set. Validation chemical testing correctly predicted 29 of 30 chemicals as per 3T3-L1 testing, suggesting good adipogenic prediction perform-
ance for our best adapted model.
DISCUSSION:Using the most recent ToxCast data and an updated ToxPi model, we found ToxCast performed similarly to that of our own 3T3-L1 test-
ing in predicting consensus calls. Furthermore, we provide the full ranked list of largely untested chemicals with ToxPi scores that predict adipogenic
activity and that require further investigation. https://doi.org/10.1289/EHP6779

Introduction
The global prevalence of metabolic disorders, including obesity,
is of great societal concern. Despite numerous attempted inter-
ventions, rates remain high: 8.9% of infants and toddlers (Hales
et al. 2017; Skinner et al. 2018), 15.7% of children 2–5 y old
(Hales et al. 2017; Skinner et al. 2018), 18.5% of children 2–19 y
old (Hales et al. 2017; Skinner et al. 2018), and 42.4% of adults
(≥20 y) (Hales CM et al. 2020) are currently classified as obese
in the United States. High societal costs (Biener et al. 2018;
Legler et al. 2015) have driven support for research into putative
causal factors such as metabolism-disrupting chemicals (MDCs),
which have been shown to modulate metabolism in vivo and/or
triglyceride accumulation in vitro (Heindel et al. 2015; Janesick
and Blumberg 2016).

As high costs prohibit comprehensive in vivo screening for
metabolic disruption, we must use lower-order (in vitro) testing,

screening, and measured or predicted exposures to prioritize
higher-order (in vivo) testing for chemicals most likely to affect
human or environmental health. Several high-throughput screen-
ing (HTS) programs now exist [e.g., Tox21 (Attene-Ramos et al.
2013), ToxCast (Dix et al. 2007)], providing activity estimates
for thousands of chemicals across hundreds of in vitro assays.
Researchers have used ToxCast’s in vitro data to model in vivo
hazard (Knudsen et al. 2015), with many achieving robust models
with >70% success for diverse end points such as rat reproduc-
tive toxicity (Martin et al. 2011), prenatal developmental toxicity
(Sipes et al. 2011), and hepatotoxicity (Liu et al. 2015). In con-
trast, others have achieved poorer predictive success, hypothe-
sized to result in part from missing mechanistic pathways not
covered by ToxCast assays in the early phase data releases
(Schwarzman et al. 2015).

Generally, models that have used the Phase I release of
ToxCast data (released in January 2010) have suffered from
poorer predictive success, though the ToxCast development pipe-
line has been refined over time (Figure 1). The HTS analysis
pipeline was refined in October 2015 with the Phase II release,
and Phase III further refined the pipeline in October 2018
(updated in May 2019). These new phase releases added addi-
tional assays, chemicals, and improved data processing incorpo-
rating approaches for addressing cytotoxicity and more robust
activity determination. ToxCast includes many assays related to
metabolic health. Properly harnessing these broad in vitro data
could potentially prioritize further testing for the tens of thou-
sands of chemicals in commerce (U.S. EPA 2020) with unknown
metabolic health effects.

In 2011, the National Institute for Environmental Health
Sciences (NIEHS) hosted a workshop to develop models for pre-
dicting in vivo obesogenic and/or diabetogenic outcomes using
the potencies and cytotoxicities reported in the initial Phase I
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release of ToxCast and Tox21 data (Thayer et al. 2012). Expert
panels developed models targeting various aspects of metabolic
disruption, including a model intended to predict adipocyte dif-
ferentiation (herein referred to as the 8-Slice model for the eight
signaling pathways included in the model), which was later
applied in Janesick et al. 2016. Subsequently, NIEHS and
ToxCast scientists updated the adipogenesis model, herein referred
to as the 5-Slice model, and published the model results using
Phase II ToxCast/Tox21 data (Auerbach et al. 2016). The 5-Slice
model included the same underlying molecular pathways but
grouped them differently. Reduction from 8 “slices” or pathways
to 5 was achieved through: a) merging the PPAR response element
(PPRE) assay into the peroxisome proliferator activated receptor
gamma (PPARc) slice (rationale: a chemical activating PPARc
would activate both PPARc assays and the PPRE assay, providing
a disproportionate weight in the 8-Slice model); b) merging the
liver X receptor response element into the LXR slice; and c) merg-
ing the sterol regulatory element binding transcription factor 1
(SREBF1) and CCAAT/enhancer binding protein beta (C=EBPb)
assays into a single slice (rationale: they were expected to be
minor contributors and lacked orthologous assays).

Most commonly, toxicologists evaluate potential adipogenic
effects using the murine in vitro 3T3-L1 differentiation assay.
When exposed to adipogenic chemicals, 3T3-L1 cells differenti-
ate into adipocytes, accumulate triglycerides, and over time shift
toward the morphology of a mature mammalian white fat cell
(large central lipid droplet and displaced nucleus). We previously
demonstrated reproducibility issues using 3T3-L1 differentiation
assays stemming largely from differential receptor expression
(Kassotis et al. 2017b), but nonetheless, this model has demon-
strated utility over 40 y of rigorous testing (Angle et al. 2013;
Chamorro-García et al. 2013; Li et al. 2011; Masuno et al. 2005;
Sargis et al. 2010). Newer models provide additional insights and

may allow for expanded determinations of adipogenic activities
(Janesick et al. 2016; Lane et al. 2014; Pillai et al. 2014; Wolins
et al. 2006), but these fall outside the scope of the work herein.

To evaluate the performance of metabolism-relevant ToxCast
assays, Janesick et al. 2016 performed two sets of experiments
evaluating ToxCast chemicals using reporter gene assays and a
3T3-L1 adipogenesis assay (Janesick et al. 2016). The first experi-
ment evaluated 21 top-scoring chemicals from ToxCast Phase I
PPARc assays in a PPARc reporter assay, with active chemicals
further evaluated in 3T3-L1 cells. Four of 21 chemicals had agonist
activity and 3 of 21 had antagonist activity, with 4 of 4 agonists and
0 of 3 antagonists inducing 3T3-L1 adipogenesis. The second
experiment evaluated 24 chemicals (including 7 from the first
study) chosen from the 8-Slice model, built using Phase I data (11
high and 6 medium-scoring predicted positives, and 7 predicted
negatives). They evaluated the 24 chemicals using the 3T3-L1
assay and reporter gene assays (PPARc and RXRa, its heterodi-
meric partner). Of these 24 chemicals, they confirmed 7 of 17 pre-
dicted positive chemicals as active for adipogenic activity in
3T3-L1 cells and also reported activity for 2 of 7 predicted inac-
tive chemicals. Ultimately, the authors concluded that ToxCast
required better validation of primary HTS assays before using
ToxCast data/models for chemical prioritization or to inform reg-
ulatory testing (Janesick et al. 2016).

In our current work, we have evaluated a set of 38 semivola-
tile environmental chemicals included in Phase III ToxCast. We
performed a metabolism-targeted literature review and compared
the literature consensus against our own published 3T3-L1 results
(Kassotis et al. 2017a, 2017b). We then evaluated the predictive
success (ability for each model to correctly identify active and
inactive chemicals) for these 38 chemicals using the two pub-
lished ToxPi models (8-Slice vs. 5-Slice), comparing their per-
formance against the previous Janesick et al. (2016) 3T3-L1

Figure 1. ToxCast Development and Method Analysis Timeline. Timeline of the varying phases of ToxCast data releases, the overall data provided by those
data releases, and the subsequent predictive models generated for each phase of data release.
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results and our own. We also evaluated the impact of cytotoxicity
filtering on the predictive success. Last, we validated the per-
formance of this best-performing model by testing a balanced
chemical test set of 15 predicted active and 15 predicted inactive
chemicals using 3T3-L1 cells.

Materials and Methods

Evaluating ToxPi Performance
To evaluate performance across the ToxCast-based adipogenesis
predictive models we apply here, we used the cutpointr R
package (version 1.0.32; https://CRAN.R-project.org/package=
cutpointr) to determine the ToxPi score cutoff that maximized the
sum of sensitivity and specificity for each “biological activity
set” (Thiele and Hirschfeld 2021) separately to determine the cut
points, which were then subsequently applied to ToxCast Phase I
and III data (Table 1). We considered chemicals with ToxPi
scores greater than or equal to the cutoff as active and chemicals
with scores below the cutoff as inactive. We then calculated con-
fusion matrix statistics using the caret R package (Kuhn 2008),
comparing the predicted activities to a set of reference chemicals.
We compared the ToxPi scores to the literature consensus calls
(Excel Tables S1–S3), our previously published 3T3-L1 results
(Excel Table S3; Kassotis et al. 2017a, 2017b, hereinafter
referred to as the Kassotis et al. 3T3-L1 results), and the Janesick
et al. 3T3-L1 results with each occurrence (Excel Table S4;
Janesick et al. 2016). With the limited reference chemicals, we
made no attempt to apply standard cross-validation practices in

tuning the cutoff. The approach taken here maximizes predictive
power for each model based on the specific reference set used.
Effectively, we give an upper range to the predictive power of
each model assuming different “biological activity sets” (i.e.,
using the Janesick et al. 3T3-L1 results, the Kassotis et al. 3T3-
L1 results, or the literature consensus results as the determination
of active vs. inactive).

We focus reporting on balanced accuracy (the average of sen-
sitivity and specificity, correcting for the imbalances in negatives
and positives within the biological activity sets), because refer-
ence sets are all imbalanced: Janesick et al. (2016) 3T3-L1 testing
included 25 active and 13 inactive chemicals, our 3T3-L1 testing
included 22 active and 16 inactive chemicals, and the literature
consensus included 25 active and 5 inactive chemicals. More typ-
ical evaluative metrics for success are less informative with
unbalanced sets but are included here for comparison purposes.
Evaluation metrics include false positive rate (percentage of
incorrect positive determinations per total chemical number) and
false negative rate (percentage that were incorrect negative deter-
minations out of all chemicals). Positive predictive value (PPV)
was calculated as the percentage of correct activity determina-
tions out of all active-predicted chemicals, whereas negative pre-
dictive value (NPV) was calculated as the percentage of correct
activity determinations out of all inactive-predicted chemicals.
Sensitivity was calculated as the percentage of chemicals that
were correctly identified as active out of all truly active chemi-
cals, whereas specificity was calculated as the percentage that
were correctly identified as inactive out of all true inactive chemi-
cals. Thus, the population of active vs. inactive chemicals does

Table 1. Descriptive model results.

Model Phase
Control
set used

Control
data type z-Score

Principal
response
curve

Calculated
cut point Sensitivity Specificity

Positive
predictive
value

Negative
predictive
value

Balanced
accuracy Accuracy

8-Slice PhI Janesick Cell None 0.46 0.17 0.62 0.64 0.47 0.76 0.63 0.63
8-Slice PhIII Janesick Cell None 0.37 0.25 0.31 0.84 0.50 0.70 0.57 0.66
8-Slice PhIII Janesick Cell >0 0.35 0.06 0.77 0.40 0.40 0.77 0.58 0.53
8-Slice PhIII Janesick Cell >1 0.35 0.05 0.69 0.48 0.41 0.75 0.59 0.55
8-Slice PhIII Janesick Cell >2 0.37 0.04 0.69 0.52 0.43 0.76 0.61 0.58
8-Slice PhIII Janesick Cell >3 0.37 0.01 0.77 0.40 0.40 0.77 0.58 0.53
8-Slice PhIII Kassotis Cell None 0.66 0.02 0.95 0.50 0.72 0.89 0.73 0.76
8-Slice PhIII Kassotis Cell >0 0.72 0.01 0.95 0.50 0.72 0.89 0.73 0.76
8-Slice PhIII Kassotis Cell >1 0.73 0.04 0.59 0.69 0.72 0.55 0.64 0.63
8-Slice PhIII Kassotis Cell >2 0.66 0.01 0.55 0.69 0.71 0.52 0.62 0.61
8-Slice PhIII Kassotis Cell >3 0.72 0.01 0.50 0.75 0.73 0.52 0.63 0.61
8-Slice PhIII Kassotis Literature None 0.97 0.02 0.88 0.80 0.96 0.57 0.84 0.87
8-Slice PhIII Kassotis Literature >0 0.97 0.01 0.88 0.80 0.96 0.57 0.84 0.87
8-Slice PhIII Kassotis Literature >1 0.96 0.01 0.68 1.00 1.00 0.38 0.84 0.73
8-Slice PhIII Kassotis Literature >2 0.95 0.01 0.52 1.00 1.00 0.29 0.76 0.60
8-Slice PhIII Kassotis Literature >3 0.94 0.01 0.44 1.00 1.00 0.26 0.72 0.53
5-Slice PhIII Janesick Cell None 0.36 0.29 0.15 0.96 0.67 0.69 0.56 0.68
5-Slice PhIII Janesick Cell >0 0.33 0.11 0.31 0.80 0.44 0.69 0.55 0.63
5-Slice PhIII Janesick Cell >1 0.34 0.01 0.85 0.28 0.38 0.78 0.56 0.47
5-Slice PhIII Janesick Cell >2 0.35 0.01 0.85 0.36 0.41 0.82 0.60 0.53
5-Slice PhIII Janesick Cell >3 0.37 0.01 0.77 0.48 0.43 0.80 0.62 0.58
5-Slice PhIII Kassotis Cell None 0.66 0.04 0.77 0.69 0.77 0.69 0.73 0.74
5-Slice PhIII Kassotis Cell >0 0.72 0.01 0.95 0.50 0.72 0.89 0.73 0.76
5-Slice PhIII Kassotis Cell >1 0.71 0.04 0.55 0.75 0.75 0.55 0.65 0.63
5-Slice PhIII Kassotis Cell >2 0.64 0.01 0.59 0.69 0.72 0.55 0.64 0.63
5-Slice PhIII Kassotis Cell >3 0.70 0.01 0.50 0.81 0.79 0.54 0.66 0.63
5-Slice PhIII Kassotis Literature None 0.98 0.04 0.76 1.00 1.00 0.45 0.88 0.80
5-Slice PhIII Kassotis Literature >0 0.98 0.02 0.76 1.00 1.00 0.45 0.88 0.80
5-Slice PhIII Kassotis Literature >1 0.96 0.02 0.68 1.00 1.00 0.38 0.84 0.73
5-Slice PhIII Kassotis Literature >2 0.95 0.01 0.56 1.00 1.00 0.31 0.78 0.63
5-Slice PhIII Kassotis Literature >3 0.94 0.01 0.44 1.00 1.00 0.26 0.72 0.53

Note: Descriptive model success rates for each model (8-Slice vs. 5-Slice), z-score (none, >0:0, 1.0, 2.0, 3.0) and reference data set (Janesick et al. 2016 3T3-L1 results, Kassotis et al.
2017 3T3-L1 results, and literature consensus calls for Kassotis et al. 2017 chemical set) combination. Accuracy, the proportion of correct predictions; balanced accuracy, the average
of sensitivity and specificity [corrects accuracy for the imbalance in classes (e.g. positives and negatives)]; NPV, negative predictive value, percent correct determinations out of all
inactive-predicted chemicals; PPV, positive predictive value, percent correct determinations out of all active predicted chemicals; PRC, principal response curve; Sensitivity, percent
true positive detection rate; Specificity, percent true negative detection rate.
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not influence sensitivity and specificity; in contrast, PPV and
NPV are characteristics of the population (in a population with a
high prevalence of predicted active chemicals, there is a greater
likelihood of chemicals testing as active to truly be active relative
to a low-prevalence population). Accuracy was calculated as the
proportion of correct predictions, and balanced accuracy was cal-
culated as the average of sensitivity and specificity (correcting ac-
curacy for the imbalance in classes, i.e., positives and negatives).

Predictive Model Validation
To directly address the concern of unbalanced chemical sets, we
also selected a set of 30 test chemicals based on the best-
performing model rankings (5-Slice model without cytotoxicity
adjustment and using Phase III data) of the entire ToxCast data-
base. Sets of 6 chemicals were selected semirandomly from the
top 50 ranked chemicals (highest ToxPi scores, set 1), the bottom
50 (lowest ToxPi scores, set 2), from the 100 chemicals surround-
ing the cut point of 0.04 (50 above and 50 below, 3 chemicals
were selected on either side of this point; set 3), and from approx-
imately equal intervals from the top or bottom 50 to the cut point
value (sets 4 and 5). We randomly selected chemicals and then
vetted them for availability (in stock, available to ship) and cost
(<$250USD); we continued randomly selecting chemicals until
we reached a set of readily available test compounds. Altogether,
15 chemicals were selected above the cut point (predicted active)
and 15 selected below the cut point (predicted inactive) to con-
tribute to the balanced validation chemical set (Table 2).

Assessment of Adipogenic Activity for Validation Test
Chemicals
We performed adipogenic testing of selected test chemicals in
3T3-L1 cells using methods described previously (Kassotis et al.
2017a, 2017b, 2018) and detailed in the supplemental material.
Briefly, 3T3-L1 cells (Zen-Bio, Inc. Cat. No. SP-L1-F, Lot No.
3T3062104, passages 10–13) were maintained in preadipocyte
media [Dulbecco’s Modified Eagle Medium–High Glucose
(DMEM-HG), with 10% bovine serum and 1% penicillin and strep-
tomycin]. Cells were induced to differentiate as previously
described: ∼ 40,000 cells per well were seeded into 96-well tissue
culture plates and 48 h after confluency were induced to differenti-
ate. Preadipocyte media was replaced with test chemicals (Table 2;
Excel Table S18) at concentrations from 1 nM–10 lM, the rosigli-
tazone positive control at concentrations from 10 pM–1 lM, or ve-
hicle control [0.1% dimethylsulfoxide (DMSO), vehicle used for
all chemical exposures at a set concentration across the plate] in
differentiation media [DMEM-HG with 10% fetal bovine serum,
1% penicillin/streptomycin, 1:0 lg=mL human insulin, and
0:5mM 3-isobutyl-1-methylxanthine (IBMX)]. After 48 h, media
was replaced with test chemicals in differentiation media without
IBMX and refreshed every 2–3 d until assay. Plates were assayed
for triglyceride accumulation and DNA content after 10 d of differ-
entiation: Media was removed, cells rinsed with Dulbecco’s
phosphate-buffered saline (DPBS) and then replaced with 200 lL
dye mixture (19 mL DPBS, 20 drops NucBlue, and 500 lL of
40 mg=L Nile Red stain). Plates were protected from light and
incubated at room temperature for approximately 30 min; then flu-
orescence was measured at 485 nm=472 nm (excitation/emission)
for Nile Red and 360/460 for NucBlue, using a Molecular
Devices iD5 plate reader. Percent activity (efficacy) across the
dose–response range was calculated relative to the maximal
rosiglitazone-induced fold induction over intra-assay differenti-
ated 0.1% DMSO controls. DNA content was calculated as per-
cent difference from differentiated solvent controls and was used
to normalize total triglyceride values. Four technical replicates of

each test chemical and concentration were included within each
assay, and each assay was performed three times with different
cell passages. Significant activity was determined as an increase
in the differentiated solvent control response for each test chemi-
cal for adipogenic outcome metrics per Kruskal-Wallis test
(Prism 9, GraphPad Software, LLC.).

Literature Consensus
Our hypothesis was that relying on a single adipogenic assay
would limit the determination of metabolic disrupting activity.
Therefore, we wanted to develop biological activity sets based on
aggregate determinations for each chemical. To accomplish this,
we established literature consensus calls via a targeted literature
search. We performed literature searches (through 30 October
2019) in PubMed using the name(s), Chemical Abstracts Service
Registry Number (CASRN), and acronym of each individual
chemical in combination with various terms (Excel Table S1).
We selected 38 chemical contaminants based on our previous
testing in 3T3-L1 cells (Kassotis et al. 2017a, 2017b) and their
inclusion in the ToxCast database. We began by identifying sys-
tematic reviews; we accepted the activity determination from
metabolism-relevant systematic reviews and did not perform sub-
sequent literature reviews. For the remaining chemicals, we per-
formed chemical-specific searches using the following metabolic
dysfunction key terms: obesity, diabetes, glucose, fat, adipocyte,
adipogenesis, adipose, 3T3-L1, cholesterol, and triglycerides
(defined in Excel Table S1). We screened queried manuscripts
for metabolic relevance by their title and abstract and then
assessed metabolic activity from the full manuscript text (Excel
Tables S2 and S3). Although a true systematic review approach
was not used in our methodology due to poor feasibility for 38
individual chemicals, we determined the overall direction of evi-
dence for each chemical based on our literature search (Excel
Tables S2 and S3). For this search, we evaluated all references
and included all references to metabolic health in the determina-
tions of activity.

It is important to note is that, given our existing adipogenesis
testing for all 38 chemicals and our desire to interrogate the util-
ity of 3T3-L1 testing alone, we excluded our activity determina-
tions from the literature determinations and included this as a
separate column within Excel Table S3. We based the determina-
tion of activity on the number of active vs. inactive references;
no ties existed in our review, and so we used the number of refer-
ences as a determining factor when making decisions. We had no
intention to provide a systematic review for each chemical and
did not perform substantive reviews to assess the strength of the
evidence available for each chemical (or specifics related to
active concentrations, etc.).

ToxCast Data Access and Manipulation
We downloaded ToxCast Phase I (Reif et al. 2010) and Phase III
(Judson et al. 2016) results from the U.S. Environmental
Protection Agency file transfer protocol. Full ToxCast data sets
from the Phase I and III releases are provided in full within the R
package specified below. They are also available online as fol-
lows: ToxCast Phase I release (available at https://gaftp.epa.gov/
Comptox/High_Throughput_Screening_Data/Previous_Data/Jan_
2010_PhaseI_ToxCast_Data/ToxCast_20110110.zip), which only
contained AC50 values in micromolar units, with inactive assay–
chemical pairs provided as 1 M. We transformed AC50 values to
potency using the standard transformation: −log10ðAC50=106Þ).
ToxCast Phase III release (available at https://gaftp.epa.gov/
Comptox/High_Throughput_Screening_Data/InVitroDB_v3.2/
Summary_Files/INVITRODB_V3_2_SUMMARY.zip) provided
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all the fitting metrics from the tcpl R package (Filer et al. 2017).
Briefly, we combined data from the “modl_ga,” “tested,” and
“hitc” matrices to replicate a potency matrix analogous to the
Phase I data. We used R (version 4.0.1; R Development Core
Team) to provide a vignette (see Supplemental Material, “Data
Download and Setup”) containing code to download and process
the Phase I and Phase III data. This vignette is provided as part of
a standalone R package replicating the analytic work presented
here to provide complete transparency and tools for future assess-
ments (available at https://github.com/daynefiler/kassotis2020;
full “worked” example of this code is available at https://
daynefiler.com/kassotis2020/).

ToxPi Expert Models
To assess the ToxCast predictive performance we used two exist-
ing ToxPimodels derived from the 2011NIEHSworkshop onmet-
abolic disruption (Thayer et al. 2012): a) the 8-Slice adipogenesis
model published in Janesick et al. 2016, and b) the 5-Slice adipo-
genesis model published in Auerbach et al. 2016. It is important to
note that both predictive models use the same assays and pathways
but have grouped themdifferently in attempts to better discriminate
true activity from inactivity. In the current work, we constructed
the 8-Slice model for both Phase I and Phase III releases to assess
how ToxCast updates (both increased chemical numbers and
improved analyses) changed the predictive power. The Phase I
model contained one assay (“NCGC_LXR_Agonist”) with no ana-
log in the Phase III release. The 8- and 5-Slice models each cover
15 assays with 14 overlapping assays. The complete model
descriptions are provided in Supplemental Material, Supplemental
Files 1 (“Data Download and Setup”) and 2 (“Create Models”),
(also available at https://daynefiler.com/kassotis2020/).

We calculated ToxPi scores as previously described (Filer
et al. 2014; Reif et al. 2010) using R code provided in the accom-
panying package (available at https://github.com/daynefiler/
kassotis2020; “worked” example available at https://daynefiler.

com/kassotis2020/). Briefly, ToxPi models integrate data into sli-
ces (e.g., representing a biological pathway). The ToxPi score
represents the average of each slice, with higher ToxPi scores
indicating greater activity. Phase III data contains chemical-
specific z-scores based on the distribution of cytotoxicity assays
included in ToxCast (Judson et al. 2016). Judson et al. recom-
mended using z-score filtering to select data with activity distinct
from overt cytotoxicity. The Auerbach et al. (2016) study created
models by first filtering results with z-scores <2 and then adding
the remaining z-score values to respective potency values to fur-
ther prioritize bioactivities. Janesick et al. (2016) also used a sim-
ilar approach with a threshold of 3, serving to filter results with
z-scores<3. We included model results with no filtering, and
then used the remove/add procedure to filter model results by
z-score values >0:0, 1.0, 2.0, and 3.0. All calculations are repli-
cated within the “Create Models” vignette (see Supplemental
Material) using the accompanying R package, which provides all
model results for all performance metrics and model-defined opti-
mal cut points for every model (see Supplemental Material,
“Model Results,” Figures S1–S26).

Results

Literature Consensus vs. Prior 3T3-L1 Results
We performed a targeted literature search for any evidence of met-
abolic disruption on a set of 38 chemicals that we evaluated previ-
ously in 3T3-L1 cells (Kassotis et al. 2017a, 2017b) to assess the
limitations of using a single assay in determining metabolic activ-
ity. We found studies specific to metabolic health outcomes for 30
out of 38 chemicals (other than our previous publications) with an
overall concordance (agreement between predictions and literature
determinations) of 23 out of 30 (Excel Table S3). The 7 out of 30
discordant results all had literature support for activity.
Specifically, we reported all four parabens as inactive in 3T3-L1
cells (Kassotis et al. 2017a), but all four had literature support for
activity at concentrations greater than we had tested previously
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Figure 2. Balanced accuracy for all combinations of model and reference set. The large box (bottom left) gives the balanced accuracy (the average of sensitiv-
ity and specificity; correcting accuracy for the imbalance in classes, e.g., positives and negatives), using the Kassotis et al. 2017 3T3-L1 results to predict the
literature consensus calls for reference. Each row in the box matrix represents cytotoxicity filtering levels; “None” represents no filtering/adjustment, and
z-score>n represents the z-score cutoff for the filter-and-add adjustment (see “Methods” section). Each column represents (from top to bottom) the other input
parameters for the various models, including ToxCast release (Phase I vs. III), model (8-Slice vs. 5-Slice), reference set source (Janesick et al. 2016 chemical
set vs. Kassotis et al. 2017 chemical set), and reference set type (cell assay results vs. literature results). The dark and light boxes above the matrix indicate
characteristics of the model specified. For example, the entry in row 1 and column 5 represents Phase III data, the 5-Slice model, and using the Janesick et al.
2016 cell 3T3-L1 results without any z-score filtering. Darker boxes indicate higher balanced accuracy values. Blank entries were not computed.
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(Kolatorova et al. 2018; Hu et al. 2013, 2016, 2017); moreover,
“inactive” literature determinations were specific to diabetes-
related outcomes (Liu et al. 2019; Makaji et al. 2011), all support-
ing an “active” determination for adipogenic outcomes. We previ-
ously reported triclosan to be inactive (Kassotis et al. 2017a),
though other researchers reported that it can inhibit adipogenesis in
vitro (Guo et al. 2012). Chlorfenapyr was inactive in our assay
(Kassotis et al. 2017a) but showed positive in vivo effects in the lit-
erature (Albers et al. 2006; Eman and Basem 2008). We reported
tris (1,3-dichloro-isopropyl) phosphate (TDCIPP) inactive previ-
ously (Kassotis et al. 2017a), but the literature search revealed pos-
itive effects in multiple models (den Broeder et al. 2017; Hao et al.
2019; Kopp et al. 2017). Of the eight chemicals without previous
literature support to draw from, four chemicals were identified as
active and four as inactive in our previous 3T3-L1 testing (Excel
Table S3).

As a baseline for later comparison, we calculated confusion
matrix statistics using our 3T3-L1 results to predict literature con-
sensus calls (Excel Table S5). To support visualization of the per-
formance of the predictive algorithm across each of the data sets
(chemicals tested in Janesick et al. 2016 or chemicals tested in
Kassotis et al. 2017a, 2017b) and using various biological activ-
ity sets (activity determinations in 3T3-L1 cells or using the
defined literature search strategy for evidence of metabolic dis-
ruption), we used balanced accuracy as the main predictive met-
ric of success. Using Phase III data, the 5-Slice model, the
Kassotis et al. chemical set (Kassotis et al. 2017a, 2017b; Excel
Table S3), and the literature consensus results as the “biological
activity set,” we observed the balanced accuracy ranged from

0.72 to 0.88 depending on the z-score cytotoxicity correction.
The ToxCast database provides z-score values for assessing po-
tency of bioactivity relative to cytotoxicity (Judson et al. 2016).
Greater z-scores represent wider concentration ranges between
bioactivity and putative cytotoxicity; conversely, lower z-scores
may reflect nonspecific activation of pathways (Judson et al.
2016). The Kassotis et. al 3T3-L1 results predicted the literature
calls with a balanced accuracy of 0.86.

ToxPi Model Performance
We next analyzed the results from the 8-Slice model for our ref-
erence chemical set (previous Kassotis et al. 2017a, 2017b
results), using Phase I ToxCast data to provide a baseline for
comparison to the original work performed in Janesick et al.
(2016). The overlap from our reference set and the 309 Phase I
chemicals only included chemicals deemed active in both our
previous 3T3-L1 results and the literature review (included in
Phase I, Excel Table S3). Therefore, to better evaluate Phase I
data using a test chemical set with both true positives (TP) and
true negatives (TN), we evaluated the Phase I 8-Slice ToxPi
scores using the 3T3-L1 results provided in Janesick et al. 2016
(provided in Excel Table S4). Using the Phase I 8-Slice unad-
justed potency-derived ToxPi scores (no z-scores are provided in
Phase I for cytotoxicity corrections) to predict Janesick et al.
chemicals resulted in 8 true positives (TP), 16 true negatives
(TN), 9 false positives (FP), and 5 false negatives (FN), for a bal-
anced accuracy of 0.63, per their 3T3-L1 testing (Figures 2 and
3B).

Figure 3. Ranked ToxPi scores showing the distribution of reference chemicals. Orange “+” indicates a positive reference chemical; purple “x” indicates a
negative reference chemical. Vertical dashed line shows the optimal cut point (maximizing the sum of sensitivity and specificity) based on the reference set;
any chemicals to the right of the dashed line are predicted to be positive via the ToxPi model. (A) 8-Slice model calculated on Phase I data compared with
Janesick et al. 2016 3T3-L1 results. (B) 5-Slice model calculated on Phase III data without cytotoxicity filtering compared with literature consensus calls. Data
used to generate these figures can be found in supplemental Excel Tables S6 (A) and S12 (B) and supplemental files: 1, “Data Download and Setup”; 2,
“Create Models”; and 3, “Model Results.” “Worked” example of this code is also made available at https://daynefiler.com/kassotis2020/.
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We next examined the predictive utility using the most cur-
rent data set (Phase III) to evaluate improvements in the ToxCast
data. To achieve this, we built both 8-Slice and 5-Slice models
with progressive adjustments for cytotoxicity (e.g., no adjust-
ment, or setting thresholds for z-score>0:0, 1.0, 2.0, or 3.0) and
using both chemical sets (Kassotis et al. 3T3-L1 results provided
in Excel Table S3, Janesick et al. 2016 3T3-L1 results provided
in Excel Table S4). We adjusted for z-scores as described previ-
ously (Auerbach et al. 2016; Janesick et al. 2016); we eliminated
potency values below a threshold (1.0, 2.0, or 3.0, as specified)
and then added the z-score to remaining potencies to further pri-
oritize chemicals with greater separation of activity and cytotox-
icity. Auerbach et al. reported that adjusting for z-scores
increases confidence in bioactivities and reduces false positives
in the prediction process (Auerbach et al. 2016); however,
Janesick et al. reported increased false negatives when incorpo-
rating z-scores (Janesick et al. 2016). We compared the resulting
ToxPi scores to the three reference sets: Janesick 3T3-L1 2016
(Excel Table S4), Kassotis 3T3-L1 2017a, 2017b (Excel Table
S3), and literature consensus (Excel Tables S2, S3). Balanced
accuracies ranged from 0.55 to 0.88 (Figure 2). We observed the
best balanced accuracy rates using the literature consensus for the
Kassotis et al. 2017 chemical set (Excel Table S3).

We found that the 5-Slice model without cytotoxicity adjust-
ment against the literature consensus performed best, resulting in
19 TP, 5 TN, 6 FN, and 0 FP and a balanced accuracy of 0.88

(Figure 2). In general, we found decreasing performance as we
increased the cytotoxicity filter for most models, with accuracy
dropping from 0.88 (no z-score correction) to 0.72 (z-score>3) in
this model. We provide the table of all calculated metrics and
analogous figures in Excel Tables S6–S17 and Supplemental
Material, “Model Results and Code” (also available at https://
daynefiler.com/kassotis2020/).

Focusing on this best-performing model (5-Slice model with-
out cytotoxicity adjustment against the literature consensus), we
found 103 chemicals in the Phase III data set that had ToxPi
scores higher than the highest-scoring TP chemical in our refer-
ence set of 38 chemicals tested in Kassotis et al. 2017 chemical
set (Excel Table S3, triclosan; 3,380-34-5). The full list of rank-
ings using this model for the entire ToxCast database are pro-
vided in Excel Table S12. It is interesting that our previous 3T3-
L1 testing (Kassotis et al. 2017a, 2017b) found triclosan to be
inactive at concentrations <10 lM; however, it is reported active
in the literature as an adipogenesis antagonist (Excel Table S2).
As the cytotoxicity threshold was increased, triclosan dropped in
rank from 9,121 out of 9,224 (higher rank indicating greater ac-
tivity) to 8,187, suggesting that cytotoxicity scores might serve to
lower the relative predicted importance of antagonists.

We used the cutpointr R package to calculate the active/inac-
tive cutoff that maximized the sum of sensitivity and specificity
(chemicals to the left of the cutoff are predicted negative, and
those to the right are predicted positive); we provide the data, full

Figure 4. Adipogenic Testing of Validated Test Chemical Set. 3T3-L1 cells were differentiated as described in the “Methods” section and exposed to dose
responses of 30 ranked ToxCast chemicals, then assayed to assess triglyceride accumulation relative to the maximal rosiglitazone positive control response and
preadipocyte proliferation (DNA content) relative to the average differentiated solvent control response. Results provided are average responses ± standard
error of the mean based on three biological replicates and four technical replicates within each. (A–C) adipogenic activity testing for the 15 predicted active
chemicals based on 5-Slice model rankings; (A) total triglyceride accumulation per well relative to maximal rosiglitazone-induced response; (B) DNA content
relative to differentiated solvent control (increase from zero denotes proliferation, whereas a decrease denotes cytotoxicity); (C) normalized triglyceride accu-
mulation (normalized to DNA content) relative to maximal rosiglitazone-induced response. (D–F) adipogenic activity testing for the 15 predicted inactive
chemicals based on 5-Slice model rankings. Gross activity outcomes (active/inactive) for triglyceride accumulation and/or proliferation are provided in Table 2.
Source data for each chemical at each concentration is provided in Excel Table S18.
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functionality, and vignettes to replicate the analysis within the R
package associated with this manuscript (https://github.com/
daynefiler/kassotis2020). Out of the 15 optimal score cutoffs
(3 reference sets by 5 levels of cytotoxicity adjustment) for the 5-
Slice models, 11 predicted triclosan as active (Supplemental
Material, “Supplemental File 3: Model Results and Code,” avail-
able at https://daynefiler.com/kassotis2020/, and Excel Tables
S6–S16). The optimal cutoff for the Janesick et al. (2016) chemi-
cal set was calculated to be approximately 0.17 (Figure 3A), with
sensitivity and specificity of 0.62 and 0.64 and balanced accuracy
of 0.63 (Figure 2; Table 1). Predictive metrics were much
improved when examining the best model (5-Slice without cyto-
toxicity adjustment against literature consensus; Figure 3B). The
optimal cutoff for this model was calculated to be 0.04, and no
inactive chemicals from the test chemical set were reported above
this threshold; metrics were also markedly improved, with sensi-
tivity and specificity rates of 0.76 and 1.0, respectively, and a bal-
anced accuracy rate of 0.88 (Figure 2; Table 1).

Adipogenic Testing of Validation Chemical Set
To validate the predictive utility of our best-performing model,
we selected 30 chemicals from the full data set ranking of the
ToxCast database (5-Slice model without cytotoxicity adjust-
ment; Excel Table S12). Fifteen predicted active chemicals were
selected above the cut point of 0.04, and 15 predicted inactive
chemicals were selected below the cut point (Table 2); each were
tested for adipogenic activity using 3T3-L1 cells. Fourteen of
the 15 predicted active chemicals were deemed active via triglyc-
eride accumulation and/or preadipocyte proliferation (Table 2),
whereas methyl salicylate (predicted active) was inactive for both
adipogenic outcomes (Figure 4A–C). All 15 of the predicted
inactive chemicals were deemed inactive via both adipogenic
metrics, exhibiting neither triglyceride accumulation nor preadi-
pocyte proliferation in 3T3-L1 cells (Figure 4D–F). Comparing
the model results to the 3T3-L1 results yielded a balanced accu-
racy of 0.97.

Discussion
The 5-Slice model presented by Auerbach et al. 2016 and amended
through our testing to remove z-score corrections and use Phase III
data, performed well in predicting literature consensus calls for
active chemicals. This model resulted in 6 FN and zero FP chemi-
cals and a balanced accuracy of 0.88. Validating this model
through examining a balanced chemical set (15 predicted active,
15 predicted inactive) suggested robust performance; this model
putatively predicted 29 of 30 chemicals accurately, with 1 FP and
zero FN chemicals based on 3T3-L1 testing. An important finding
is that this model provided the upper bound of predictive perform-
ance (e.g., the best cut point using all available literature consensus
data). Despite the strong possibility for overfitting, the model
appeared to accurately discriminate the six chemicals in the valida-
tion chemical set immediately flanking the best cut point. In order
to support further research evaluating putative MDCs, we provide
a complete ranking of the ToxCast database using our best-per-
formingmodel (Excel Table S12).

Using the optimal cut point for the best model (5-Slice using lit-
erature consensus calls and Phase III data), five FN chemicals were
incorrectly predicted; however, no FP chemicals were predicted.
These five FNs included ethyl paraben, diisobutyl phthalate
(DiBP), benzyl butyl phthalate (BBP), 2,20,4,40-tetrabromodi-
phenyl ether (BDE-47), and tris(2-butoxyethyl) phosphate
(TBOEP). Methylparaben was a FN with the literature consensus,
though not using the 3T3-L1 results from Kassotis et al. 2017a,
2017b. Both ethylparaben and methylparaben have been

demonstrated to be active in 3T3-L1 cells, though we reported
inactivity for each previously (Kassotis et al. 2017a); this disparity
is likely due to the high concentrations necessary to elicit effects in
publications reporting activity (Hu et al. 2013). We previously
reported BBP borderline-active at 10 lM (Kassotis et al. 2017a),
though other groups reported it active only at 100 lM (Yin et al.
2016); this is another chemical that was active only at high, poten-
tially less environmentally relevant concentrations. TBOEP was
only found to exert effects in vivo onDaphnia magna at milligrams
per liter concentrations (Kovacevic et al. 2018). A number of refer-
ences reported associations for DiBP on body weight and diabetes-
related outcomes in humans, and several in vivo references
reported effects on metabolic hormone disruption (summarized in
Radke et al. 2019; Excel Table S2); however, no references
reported effects on adipogenesis other than our own testing in 3T3-
L1 cells [i.e., also borderline active; (Kassotis et al. 2017a)]. BDE-
47 has robust research demonstrating effects in vitro and in vivo,
but generally at concentrations of ≥10 lM (Kassotis et al. 2017a;
Tung et al. 2014). Zero FN and one FP chemical were reported in
the validation test chemical set, as discussed above.

Prediction models are a potentially crucial tool for dissecting
the vast chemical space of sublethal adverse health effects.
Although decreased predictive success was reported when using
ToxCast Phase I data, we provide evidence that improvements
have been made in subsequent data releases. Using the 5-Slice
model without z-score corrections achieved robust success and
may be suitable for screening MDCs. Performing validation test-
ing using this model resulted in 29 of 30 correct predictions
(1 FP), suggesting a sufficiently robust model for performing pre-
dictive rankings of the ToxCast data set. However, determining a
specific and precise cut point will require further assessment. In
choosing the cut point for the test set analyzed here and acknowl-
edging the imprecision in the potency values used in the model,
we rounded down the cut point given in the model from nine dec-
imal places to two (0.04 for the best-performing model). Using a
higher-precision cut point of 0.0424 would result in an additional
three compounds determined inactive in the ToxPi model,
decreasing the balanced accuracy from 0.97 to 0.86. More
research is needed on the precision of ToxPi scores, accounting
for the appropriate precision of the input data. Throughout our
controlled testing of the included models, we made no attempt to
correct for overprecision. Our results thus suggest real discrimi-
nation power in the model; however, determining the actual pre-
cision will take validation with larger biological activity sets that
allow for testing predictive success across discrete changes in
ToxPi scores.

Based on the testing reported here, poor predictive perform-
ance may result from one or a combination of several factors: the
reliance on single model testing as the sole determination of true
activity, the phase of ToxCast data used, the cytotoxicity-based
z-score corrections used, the assays and assay weights (including
slices separately vs. merging them together to not double-weight)
employed for the model, and/or the chemical set used.

Assessment of these predictive models relies on high-quality
determinations of activity (generation of a biological activity set).
We previously reported that varying sources of 3T3-L1 cells can
result in divergent nuclear receptor expression and triglyceride
accumulation (Kassotis et al. 2017b), which we demonstrated can
contribute to differential determinations of “active” chemicals in
adipogenesis assessments. As such, reliance on a single model
may limit presumed predictive success for efforts such as this. To
address this, we attempted to support our testing through a targeted
literature search that assessed activity across numerous in vitro
(other adipocyte differentiation models) and in vivo models
(diverse organisms). We acknowledge the bias against reporting
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negative results (Sridharan and Greenland 2009; van Lent et al.
2014; Wandall et al. 2007), which likely impacts the publication
of data for particular end points, although this is less prevalent for
environmental health research where an industry or producer could
directly benefit from the funding and publication of studies report-
ing negative data (Maertens and Hartung 2018). We also acknowl-
edge much of the literature consensus data comes from 3T3-L1
results, because this is the best validated and most common
method for assessing this outcome.

A need for a validated biological activity set (i.e., chemicals
rigorously determined to have or not have activity) demonstrates
the need for transparent publishing of scientifically sound nega-
tive results. One poorly controlled negative result could lead to a
study being abandoned and reported as negative when replication
or adjustment of the experimental design might have elicited a
positive result. Well-controlled studies with negative findings
must have appropriate concurrent (not historical) controls that
respond as expected (positive effects at appropriate low doses),
proper quality control measures, and rigorous examination of
proposed end points with appropriate protocols (Vom Saal et al.
2005; vom Saal and Welshons 2006). Of course, these quality-
control measures should also be expected in studies reporting
positive findings to ensure that future efforts are not misguided.
Unfortunately, given the relatively new field of research into
MDCs, a robust set of validated positive and negative chemicals
does not yet exist. An alternative approach would be a targeted
literature search assessing disruption of each of the molecular
pathways included in the model (i.e., evidence for disruption of
PPARc, GR, RXR, and other included pathways), though includ-
ing these pathways would expand the scope of the literature
search substantially. This expanded approach could perhaps be
most readily accomplished for chemicals for which systematic or
scoping reviews of receptor bioactivities have already been
performed.

Our previous 3T3-L1 testing (Excel Table S3) performed reason-
ably well in predicting literature consensus calls for metabolism-
disrupting activity (0.86 balanced accuracy). Although originally
developed for the prediction of adipogenic chemicals, themodel per-
formedwell at predicting broadermetabolic disruption. If wewere to
restrict the literature search to only references that supported adipo-
genesis (triglyceride accumulation and/or differentiation in any cell
model), little would change in terms of predictive success. The para-
bens, triclosan, and TDCIPP would be retained as active, and chlor-
fenapyr would be considered inactive (negative in our 3T3-L1
testing and no other in vitro support). This small change (one chemi-
cal difference from the determinations described above) would have
resulted in nearly equivalent predictivemodel performance.

A much more significant difference was evident if only using
the 3T3-L1 testing. As noted above, 7 of the 38 chemicals tested
here (4 parabens, triclosan, TDCIPP, and chlorfenapyr) were
incorrectly classified as negative using 3T3-L1 cells in our hands
(Kassotis et al. 2017a, 2017b). Modeling using Phase III data and
the z-score correction of 2 (the threshold used in Auerbach et al.
2016) would have predicted ethyl parabens, methyl parabens, and
chlorfenapyr as inactive (though these would be false negatives if
other in vitro testing were considered). Propyl parabens, butyl
parabens, triclosan, and TDCIPP would have been predicted
active and viewed as false positives (though these would actually
be correct predictions if other in vitro testing were considered).
This was similar to the success reported previously by Janesick
et al. 2016, who also used 3T3-L1 data to determine predictive
success. Diverse mechanisms can influence adipogenesis and no-
table cross-species and cross-tissue differences have been
reported in nuclear receptor activities (Anderson et al. 2001;
Giera et al. 2011; McDonnell 1999; Smith and O’Malley 2004;

Walker et al. 1999). As mentioned above, we previously reported
differing nuclear receptor expression profiles for different sources
of 3T3-L1 cells and subsequent differences in activity determina-
tions (Kassotis et al. 2017b). These limitations may contribute to
worsened predictive success; therefore, although our validation
chemical testing (Table 2; Figure 4) correctly predicted 29 of 30
chemicals, this used 3T3-L1 testing and may not fully reflect
accurate activity determinations across different models. Methyl
salicylate was the single chemical predicted active that was deter-
mined inactive using 3T3-L1 cells, and it was also reported inac-
tive recently in 3T3-L1, OP9, and mesenchymal stem cells
(MSCs) (Andrews et al. 2020), suggesting a correct inactive
determination. However, it is worth noting that the structurally
similar 3-methyl salicylate, orally administered to rats, rabbits,
and baboons, resulted in dysregulation of plasma free fatty acids
and cholesterol (Howard et al. 1971).

Other researchers have suggested other methods for assessing
potential human metabolism disruptors, including human MSC
models (Foley et al. 2017). Foley et al. focused on the ability of
chemicals to activate human PPARc and evaluated high- and
low-scoring chemicals via ToxCast for this pathway. Foley et al.
used activation data from Phase I of ToxCast on a single pathway
known to promote adipogenesis. Although PPARc is considered
necessary and sufficient for adipogenesis, chemicals do not need
to directly activate PPARc to promote the development of adipo-
cytes; the diverse mechanisms promoting adipocyte differentia-
tion were reviewed previously in Kassotis and Stapleton (2019).
Thus, focusing exclusively on this pathway limits screening for
MDCs. Although human cell models offer significant utility for
evaluating MDCs with human health relevance, they unfortu-
nately lack the direct in vivo translational capability of murine
and other laboratory animal cell models. Thus, robust validations
need to be performed to determine performance and relevance
via careful comparison to other cell models, animal studies, and
the epidemiological literature. Although human MSCs might
eventually be demonstrated as a superior alternative to preadipo-
cyte models, adipogenesis assays using MSCs are even more
labor- and time-intensive. Human preadipocyte models are also
now commercially available and may be used for adipogenesis
assays; however, they are cryopreserved at the end of primary
culture and can only be propagated for two additional passages at
most before losing their ability to differentiate (Millipore Sigma
2020; Zen-Bio, Inc. 2015). As such, it is not currently feasible to
evaluate the tens of thousands of chemicals in commerce using
current adipogenesis assays, and identifying the underlying
molecular pathways that are amenable to HTS may still be the
best option to facilitate screening for MDCs.

Another potential factor in previously reported poor predic-
tive performance was the timeline of data release. Comparing
Phase I to III without z-score corrections for the Janesick et al.
2016 set resulted in improved specificity, but worsened sensitiv-
ity. Considering Kassotis et al. 2017 3T3-L1 results, Phase III
results were in many cases qualitatively and quantitatively differ-
ent from Phase I results (Excel Table S3). Specifically, a number
of Phase I activity determinations (specifically for PPARc assays)
were presumed incorrect determinations based on the Phase III
data now available for these chemicals and pathways (Excel
Tables S6, S7). Further, the limited number of chemicals in
Phase I (∼ 300, relative to ∼ 9,200 in Phase III) may have lim-
ited the predictive utility of previous rankings, and reranking
using the Phase III data results in an entirely different screening
list (Excel Tables S6, S7).

z-Score corrections were intended to remove chemicals with
potencies that occurred near cytotoxicity (i.e., potential cytotoxicity-
induced nonspecific activation) in an effort to improve predictions
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(Judson et al. 2016). Using z-score values to remove pathways likely
only activated via cytotoxicity was effective at reducing false posi-
tiveswith increasing z-score thresholds (improved PPV and specific-
ity), though otherwise worsened predictive utility as measured via
balanced accuracy, sensitivity, and NPV (Figure 2; Supplemental
Material, “Supplemental File 3: Model Results and Code,” also
available at https://daynefiler.com/kassotis2020/). This worsened
predictive success does not appear to be a worthwhile trade-off,
because the putative utility of these tools would be for identifying
positively ranked candidates for further testing (and ignoring pre-
dicted negatives). Some modest improvements appeared to be pres-
ent when screening the Janesick et al. (2016) chemical set by
z-scores, though only when using the 5-Slice model; the 8-Slice
model was equivalent across z-scores corrections. Worsened predic-
tive performance was much more evident using the Kassotis et al.
chemical set (Kassotis et al. 2017a, 2017b; Excel Table S3) and the
literature consensus calls. However, performance should be eval-
uated further because the worsened performance might suggest poor
detangling of cytotoxic end points and metabolism disruption in the
literature, which can exhibit considerable overlap in outcomes.
Further research should more rigorously evaluate why the z-score
corrections were not helpful in this as well as in previous analysis
(Janesick et al. 2016). The z-scores are based on combined cytotoxic-
ity assay results, and so the imprecision for their use in this context
may reflect variations based on cell models, based on the technolo-
gies used for the cell viability or cytotoxicity measurements or the
species, sex, and/or tissue type used for themodels.

A major issue of predictive models identified previously by
Janesick et al. 2016 was the use of poor-performing assays.
Janesick et al. (2016) specifically called out the PPAR response
element (PPRE) assay as problematic due to potential interactions
with other pathways (i.e., not just PPARc). A particular issue
with the 8-Slice model is that it separates out the PPRE assay
from other PPARc assays. This potentially results in double
weighting of chemicals that activate PPARc (would score chemi-
cals as active on two separate mechanism slices for one biologi-
cal activity) or results in reporting of activity for chemicals that
activate only PPARa or b=d (activation of these pathways would
presumably result in active scores within the PPRE slice). The
5-Slice model proposed in Auerbach et al. 2016 was designed to
help alleviate these issues by grouping these potentially problem-
atic assays together to reduce their impact on the overall model.
Although this does not eliminate the issues called out by Janesick
et al. 2016, it does limit the potential impact of potential poorly
performing assays on predictive ratings; more research is needed
to more rigorously vet the individual receptor bioactivities
included in the ToxCast dataset. Other strategies to differentially
weight the slices to improve predictive success may be warranted
to further hone the models described herein. That said, the
5-Slice model performed better than the 8-Slice model for most
parameters in both Phases I and III (balanced accuracy, precision,
PPV, and specificity) for both the Kassotis et al. 2017 chemical
set (Kassotis et al. 2017a, 2017b; Excel Table S3) and the litera-
ture consensus models and suggests that giving these poor-
performing and/or imprecise assays equal weight in the model is
counterproductive. More testing should be performed with addi-
tional chemical sets, pending better data to support conclusive
activity determinations.

Based on these factors, we can make several suggestions for
best practices in using these predictive models moving forward.
First, using multiple models to determine an accurate biological
activity set is essential, because any single assay will have limita-
tions and may prevent accurate assessments of predictive success.
We have used a targeted and inclusive literature search strategy
to determining our biological activity set, which we recommend

where possible. The limitation of this approach is that the vast
majority of potential MDCs have not yet been assessed for meta-
bolic health end points, the existing literature is often limited to
one or more in vitro assays, and no literature evidence exists at
all for many of the highest-scoring chemicals. Second, we sug-
gest not using z-score cytotoxicity corrections; although false
positives are increased, losing active chemicals to incorrect false
negative predictions is a worse outcome in a predictive model
such as this. Further refinements to these scores and other techni-
ques for performing these corrections are needed in future
research. Third, using the most updated data sets takes advantage
of assay improvements, increased replicates, new assays, and
other evolutions in screening that can better support the predic-
tive modeling; as such, updated data sets should be used when-
ever possible. Fourth, there remain steps that can be taken to
better weight the contributory pathways relevant to the end point
of interest. We observed improved predictive success by reducing
slices (5-Slice), though other potential strategies such as modulat-
ing weights of slice contributions to the outcome should be
explored further. Fifth, further research is needed to more rigor-
ously vet individual ToxCast assays. Although the strength of
ToxCast is in the replication across assays and in the broad end
points examined, these individual assays need to be verified for
robustness so that poor-performing assays do not skew the predic-
tive modeling when they are included. We suggest that further
improvements to ToxCast should focus on bolstering ToxCast
assays targeting relevant molecular pathways as recommended by
Janesick et al. 2016. These improvements should include: a) addi-
tion of orthogonal assays targeting each pathway, b) inclusion of
more technical and biological replicates for each assay, c) replica-
tion experiments to identify appropriately performing assays by rel-
evant experts, and d) replacement or reassessment of poor-
performing assays if and when they are identified. Last, further
research is needed to evaluate the precision of cut points with larger
biological activity sets as they become available and to assess
whether the predictive modeling could provide utility in identifying
the potential worst actors in large data sets (highest-scoring active
chemicals), which may have greater toxicological relevance than
the medium- or low-scoring chemicals. Given the push to shift reg-
ulatory decision-making away from the use of animal models and
toward greater reliance on in vitro assays, identifying benefits and
weaknesses of approaches such as this is crucial.
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